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CONCEPTS FOR RADICALLY INCREASING THE NUMERICAL
CONVERGENCE RATE OF THE EULER EQUATIONS

1.) Introduction

There is considerable interest at the present time in
solving the Euler equations to predict fluid £flow. The Euler
equations are assumed to be good approximations of the Reynolds
averaged Navier-Stokes equations when modeling attached flows
with shock waves and rotational effects as well as being much
cheaper to compute because the fine details of the physical

viscous region are neglected.

All of the current methods of solving the Euler equations,
for example those of Reference 1, rely on iteration procedures
that linearize the governing equations about values at the
previous iteration level. The impetus behind the present study
is to determine a better function or base solution for the
linearization in order to reduce the number of iterations and, in
particular, to determine whether the number of iterations can be
reduced to one.

In Reference 2, which is the report on the Phase I effort, a
study of the transonic small disturbance (TSD) equation is
described. The idea behind the study of the TSD equation is that
it is a simple nonlinear equation which can represent shock
waves. If this equation can be linearized so that shock waves
can be represented then this technique may be transferable to the
Euler equations. In Reference 2 applications of the transonic
perturbation technique, developed by Nixon (Ref. 3), are
investigated with the conclusion that a linearized solution of
the TSD equation is feasible. However, during the course of the
study it was found that a solution of the linearized partial
differential equation obtained by the integral equation technique
differed greatly from solutions obtained by a finite difference
technique. Since it is anticipated that general solutions to the

linearized Euler and TSD equations will be obtained by finite
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difference methods, this is a disturbing result. It is suggested
also in Reference 2 that a closed form solution of the TSD

equation could be found.

This report 1is concerned with extensions of the studies
given in Reference 2, in particular a more detailed examination
of the TSD equation and the extension to the Euler equations. It
had been the intention to extend the investigation to include
three dimensional flows but lack of time and funds precluded this
step. The report is written as a series of relatively self
contained sections to facilitate understanding. In Section (2)
the anomaly between integral equation and finite difference
solutions of the TSD equation reported in Reference 2 is
resolved. The conclusion is that the finite difference technique
applied a fictitious constraint on the solution thus leading to

erroneous results.

Section (3) is concerned mainly with further studies of the
integral equation formulation of the TSD equation. One of the
more surprising results of the study is that the original
formulation of the transonic perturbation method given in
References 3 and 4 1is 1incorrect although the published results
are correct because of a numerical smoothing in the computations.
An important result is that an arbitrary solution of the integral
form of the TSD equation, that is a solution that does not locate
the shock wave, gives oscillatory behavior in the neighborhood of
the sonic line. This oscillatory behavior 1is a numerical
representation of the mathematically derived expansion shock.
The correct shock location is that which removes these
oscillations, which indicates that the oscillations are a
critical consequence of the formulation. A dissipative finite
difference solution of the 1linearized TSD equation removes these
oscillations by numerical means and thus removes the necessary
information for determining the shock location. A non-
dissipative finite difference solution 1is derived which does
locate the shock wave correctly. The results of both integral
equation and finite difference results indicate that

linearization of the TSD equation can lead to adequate results.

—4—
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In Section (4) an attempt to wuse a linearized TSD equation
with constant coefficients is described. If sufficiently
accurate, this would allow a transonic solution to be constructed
using superposition of two Prandtl Glauert solutions, one
subsonic and one supersonic. The results of this study are
inconclusive; good results can be obtained but the technique

seems to be very sensitive to numerical errors.

In Section (5) the techniques developed for the finite
difference solution of the TSD equation are applied to the
linearized Euler equations. It 1is found that the odd and even
points in the Euler solution have to be decoupled before adequate
solutions can be obtained. It is concluded that solutions of the
linearized Euler equations can be of adequate accuracy, although
it must be stated that this conclusion is based on limited
experience.

In Section (6) a study is made of separation phenomena
modeled by the Euler equations. It is concluded that although
separation can be modeled by the Euler equations, it does not
have much in common with real (physical) viscosity controlled
separation. It is found also that specifying an empirically
determined separation 1line is not consistent with the Euler

equation formulation. Finally, it is suggested the boundary
conditions commonly used in numerical solutions of the Euler

equations are inconsistent.

2.) A study of a Discrepancy Noted in Phase I

In the Phase I work two methods of calculating the
linearized TSD equation were used, namely an integral equation
method and a finite difference method. The TSD equation is
linearized about a piecewise constant base flow with one portion
giving an elliptic equation and the other a hyperbolic equation.
In the finite difference solution, calculated using a modified
version of the TSFOIL code (Ref. 5), the solution 1in the

-5-



hyberbolic zone is subsonic, while part of the flow in the
elliptic domain is supersonic. This anomalous behavior must be
understood before further work is performed since it may be due
to inherent difficulties in the finite difference approximation.
An example of the anomalous behavior is shown in Figure 1.

The computational code used in these computations is TSFOIL
(Ref. 5) which solves the equation

(1-u )y + by = O (1)

where ¢ is a perturbation velocity potential and u, = 0 or 2;
when u, =0 the equation is elliptic and when u, = 2 the equation
is hyperbolic. At the *“sonic 1line" (upstream 1limit of the

hyperbolic domain) the algorithm in TSFOIL puts

byy = O (2)

since in a continuous distribution of u Uy is unity (sonic) at

ol
this boundary. However, since ug is discontinuous in Equation

(1), the application of Equation (2) makes
=52 = © (3)

at the upstream limit of the hyperbolic zone.

The differential equation will admit discontinuous solutions

of the form
g, + 9. = O (4)

for a discontinuity normal to the x axis. Since the TSFOIL

algorithm forces ¢ __ to be zero at the sonic line it follows that

—6—
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Px = Px | (5)

¢y = ¢y = 0 (6)

and the flow in at least the initial part of the hyperbolic
domain is subsonic (¢x < 1). If the flow accelerates over the
succeeding portion of the airfoil, as is wusual, then it is
possible that at the downstream 1limit of the hyperbolic domain
the velocity is still subsonic, in which case an expansion shock
wave must exist there. This is the situation in the computations
shown in Figure 1. The anomaly is due to the enforcement of a
continuous ¢  at the “sonic" 1line, a condition which is not a
solution of the differential equation.

3.) sStudies of the TSD Equation

3.1 Introduction

The TSD equation contains several of the features of the
Euler equations, in particular the presence of shock waves. The
equation is relatively easy to analyze compared to the Euler
equations and will be used to provide insight into some of the
problems arising in the linearization.

The mechanics of correctly linearizing the TSD equation are
examined in detail in Reference 3. Basically the nonlinear TSD
equation is expanded in a power series in a small parameter, e,
in terms of a coordinate system that is also perturbed as a
series. This strained coordinate technique allows a valid
perturbation even when shock waves move during the perturbation.
The original work was for steady flow; a later extension is to
unsteady flow (Ref. 4). The objective of this work was to
perturb the airfoil geometry or the flow parameters to obtain a

-7~



solution in the neighborhood of the original base solution. The
objective in the present work is to allow large perturbations
from the base solutions and thus estimate the accuracy of the
linearized TSD equation. The base solution need not be related
to the problem under consideration other than by the fact that it
has a supersonic zone with a shock wave. It is pointed out in
Reference 3 that if the base solution does not have a shock wave
then the linearized equation cannot have a shock wave.

The work reported in References 3 and 4 uses an integral
equation analysis which allows a coupling of the boundary
conditions and the velocities to form two coupled integral
equations. These equations are easier to analyze than the basic
partial differential equations and their associated boundary
conditions. However, since the object of the present study is to
extend the linearization techniques to the Euler equations, it is
desirable to use finite difference methods because of their
advanced state of development. Accordingly the study described
in this section starts with a more detailed examination of the
integral equation than that given in Reference 3 and then extends
the basic ideas to finite difference methods.

The first result to emerge from the study is that the
perturbation theory given in References 3 and 4 is in error,
although the results are correct. The reasons are given later in
this section. It is found that the shock location is such that
oscillations in the neighborhood of the sonic line vanish. This
criteria, found wusing the integral equation, applies to the
finite difference formulation. As a consequence it is essential
that the finite difference approximation does not, in general,
remove these oscillations since their presence is critical to a
correct location of the shock wave. In this section, results
found using mixed differencing are incorrect because the
difference scheme removes these oscillations, thus allowing the
shock wave to be located anywhere.
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Both the integral equation and the finite difference
approximations are used to compute solutions of the linearized

TSD equation, and these results are of adequate accuracy.

3.2 Basic Equations

The basic transonic small disturbance equation is
bex * Puy = Py Pux (7)
with the tangency boundary condition (for a symmetric airfoil)
¢Y (x, * 0) = y (X) (8)

The far field boundary condition is that Pt ¢Y + 0 at an
infinite distance from the airfoil. Change the coordinates to
(x',y’) where

ol
I

x + £(x,y)
(9)
Y + g9(X,Y)

<
]

The differential equation, Equation (7), can then be written
as

1 _d 2 , 2
Perxr T Pyryr T Pxifrixe Yo axr (DL F £0) ¢, + gy 6001 = 80}

0 2
t g (UL + £00,, + gy #0177, ~ L+ £08., + g, 6,1}

t O mer (L + £00, + g, 8,177, - [(1+ £00,, + a8, 1)
S R [(1+g) b, *Ep ] - g w2 [(1+gyp, + E ]
y Ox’ y' 'y’ Y'y’ y 8y’ y'ty’ y'x
e 8 + f 10
axl xrx?’ gx¢yl] - ayl [gy ¢Yl y¢x] ( )
-9




and the boundary condition becomes -

¢Y (x, £ 0) = (1 + gy) ¢Y' + fy Ppr = Y g (X(X')) (11)

Denote

(1 + £.)09, + 9uby, bY U

1+ + f by Vv
( 9y )by yPx PY

Equations (10) and (11) can then be written in integral form
using Green’s identity to give

2 Aly (€(€")) - £ ., 1(x" - §")
g_=.].;_f1 S ﬂ£ 2 dgl

0 (x - €)% +y"

2
- fsf Kf’x’ [[2]_ - fg ¢§r - g£¢n,}dS

2

t Il Ky (£, 3o7 3= - Ul + g o7 (075 = U1 - 507 (9,4, + £,6,.]
- f,7 5%7 vV - 9 5%7 v}ids (12)
where
1 2

K (x,6; ¥,m) = 2= 1n {(x - ©)° + (v - m°} (13)

and S is the flow domain shown in Figure 2. Now let

U=0U_+1U
o) 1
(14)
v=V +V
o 1
~-10-
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where U, and V, are some specified velocities: Equation (12) then

becomes
v] o]
Uil -U) - 5= =1 - fstg'x'{UoUl + 3= - A}ds
+ [oIRy [Ee 5o7 + G 5ol ((Uy + U)) = (U, + U2/, ]}ds
- [ SR {E, =2 (V. + V) + g =2 (V. + V.)}ds
S?"x''"n BE’ o 1 gq on’ o] 1
(o)
= JgI®y i {gy7 Clds (15)
where
Aly, (§(€')) - £ B] (x - §')
Iy = %; fl > 2ﬂ 2 dg§”
0 (x' - §9)° +y’
U 2
+ 2 _y 2
2 T Yo ~ fSIKf’x’Uo/z ds (16)
and
A= (U, + U) [fE + fE 9, - Ie fn] + gﬁ(vo + Vl) )

1 f - f
{( + gﬂ)(l + 6) ﬂgf}

B =[(1+ gﬂ)(Uo +U)) - gg(Vo VO o+ fg)(l + gﬂ) - fng§]

C= L+ L) (Vg +Vy) - £(U, + U/ + £,)(1 + 9 - £,9¢]

The equations given above are exact; no approximations have
been made. The velocities U,r V., are arbitrary. As a first
approximation let

Ul ¢ < 1ol

(18)
IV 1 ¢ < IVl

~-11-~
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such that the nonlinear terms in U or V., can be neglected.

1 1
Also, assume that products of U, and v, with derivatives of f and
g can be neglected. This leads to the approximate form of the
equation

U (L - Uy = I - fstg,x,{UoUl - A}ds
3 3 2 ac
* g Ry AlEg 3g7 * 9 By7] Vs ~ Uo/a) — 3y
v v,
- f o - =——}ds 19
and

A = Uplfe * T¢9y - ?Efn] ; 9eVo
T + 1 + Z
[( gq)( 5) ng£]

(20)

c = £.q - )
(Vo (9 *+ £,9, - £,00) + £01/0(1 + g.)(1 + £) - £,£,]

In the general cases discussed later the y straining is not
a function of x and hence

9e © 0 (21)

This leads to the simplified equation

U (1 - U) =1 - fstg,x,{UoUl - A}ds

+ [oIRy (£ ggv [Ty = Ua/y)

ac_ 9o 9o
5 - f - g, Fro}ds

n 8¢’ (22)

-12-
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and
+ A
5 U, fe(1 gn;
1+ 1+
[( gﬂ)( 5)]
’ (23)
+
E _ [Vogn(l ff) +ffﬂU0]
1+ 1+
( gﬂ)( §)]
;L is the same as I defined in Equation (16) but with B replaced
by B.
where

B=1U/ (1+f (24)

§)

The next step in simplification 1is that the coordinate
straining terms £, g are small and expressions containing them

can be linearized. Thus, Equation (22) reduces to

U (1 -U) =TI - fstg'x'{UoUl - ngo}dS

d 2 d 3
* I R ey Fgv (U = Uo/a) = g7 (IpVo) — 7 ¢EpTs)
ov ov
£ =2 - —21ds 25
and
- Aly!' (&) + £yl (£)1(x* - &)
1,1
I, = o= = 8 > de’ (26)

[(x' - €)% + y'2)

Equation (25) is further simplified by neglecting f and
putting g zero. The first of these assumptions implies that the
straining does not vary significantly with y; the second
indicates there is no straining in the y direction.

~-13-



Neglecting f,7 and g, Equation (25) can be written as

U (1 - Ug) = Iy - [gfRe U U dS + Ox T (27)

where

L o_L AyL (£7)(x' - £'>dE 28)
Ly T 27 fo [ g2 4 g2y

- I 0 2
Ie = JofReoyiTe Uy 05 * [ofKe e, y7 (Ug = U /,)ds

AE y* (€)(x' - €&)
1 1 [
5=/ d§ (29)
M0 (xgry Pe oy 2

+

and
f = £/6x (30)

where 6xs is some parameter related to the shock location.

3.3 Analysis

Equation (27) can be written in the form

U, (1 -U) =1I, + I +8x, Ig (31)

1

where I_ is the double integral in Equation (27). This is an
equation for the unknowns Uy and 6xs. If the integrals in
Equation (31) are discretized then, if there are N points in the
x direction and N points in the y direction, Equation (31)
becomes a set of NT algebraic equations for N, values of U, and

T 1
NS values of 5xs where

~14-
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N, = N_ N (32)

and N, is the number of y grid lines covering the supersonic zone
in U,- It can be seen therefore that if there is a supersonic
zone in U, then there is an insufficient number of equations to

solve for the N, + Ng unknowns. The additional equations are

obtained by differentiating Equation (31) with respect to x to
give

aIf
+ Isl} + 6xs % (33)

_ 0
Uj, (1 -U.) -U_U {1

1 8x ‘11

If le is finite when Uo = 1, that is U1 does not constitute an
*
expansion shock, then at x (the value of x when U, = 1) Equation

(33) gives

_ U* U* _ 3 61

ox 1 5§ {ILl + Isl}|x=x* + axs{ax }'x=x* (34)

If the integrals are discretized as before then Equation (34)
gives N equations for the N_ values of 6xs in terms of u,.
Hence, Equations (31) and (34) are sufficient to solve for U, and
éxs.

The above description of the shock 1locating mechanism is
adequate for the integral equation formulation but does not
really provide much insight into how the shock is located in a
finite difference formulation of the TSD equation. Accordingly
some further investigation into the nature of the mechanism of
the shock location is necessary.

Equation (31) is an equation for U, and, if the integrals

1
are discretized, then the following matrix equation results

Ajj Upy = By + 6%, C; (35)

-15-



where Bi is a matrix of ILl and Ci the matrix of If at the "i"th.

grid point and Uij is the value of U, at the jth grid point.

Equation (35) can be inverted to give

_ -1 -1
Ulj = Aij B, + Aij[st C;1] (36)

and some criterion must be used to select 6xs.

In the integral formulation, Equation (34) can be used in
conjunction with Equation (31) to give a modified equation

~

Bj5 Upy = By (37)

1

where Ailej is a representation of the term

* % * *
U (1 - U) + fstg'x'Uoul ds - {Uluox - [ISIKE,X,X,UoUldS] P /T

and B; is a representation of the term

It would appear that the use of Equation (36) would give
some insight into the nature of the shock fitting. Consequently
the matrix Aij was assembled and each of the terms on the right
hand side computed.

In order to allow for a variable shock movement the matrix
Cs is split into components Ci(k) where

c (k) (38)

xl

BN I E B B B BN B Bl BN E B e
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and N_ is the number of grid points-in the supersonic domain.
The matrix Ci(k) contains only those values of C; on the kth grid
line with the rest of its elements =zero. When k is equal to N_
the matrix C£Ns) contains all of the elements in the outer
subsonic domain in addition to those on the Nsth y grid line.

Thus Equation (36) can be written as

_ -1 -1 (k)
U15 T Rij Bi ik 0% By Gy (39)

;; B; is shown and exhibits
oscillations. This is equivalent to a solution without moving

In Figure 3 the term A
the shock wave.

If Equation (37) is solved, the result for Ulj is smooth, as

ox

shown in Figure 4. If the values of S calculated during this

solution are used in conjunction with Equation (39) then the term

-1 (k)
kEy 0% Rij Cj

oscillates as is shown in Figure 5. However, the sum of both the
terms on the right hand side of Equation (39) leads to the Ulj
shown in Figure 4.

From the preceding discussion it follows that the correct
shock location is the location that removes the oscillations. An
alternative way of locating the shock wave is to remove the
oscillation in the solution of Equation (39). One method of

achieving this is to enforce the condition

=— =0 (40)

a3u
6x3

-17-



on each y grid line that has a sonic point, x". This condition
forces the solution U in the neighborhood of x, to have curvature
of constant sign, thus disallowing the oscillatory behavior. The
example shown in Figure 4 was recalculated using Equation (40)
rather than Equation (34) to locate the shock wave. The results
of both methods were almost identical.

Some test cases were computed using Equations (31) and (34)
as a basis. 1In all the cases the base solution is a 10% biconvex
airfoil at M, = 0.808. A single straining function of the type
given in Reference 3 1is used. In Figqure 6 the pressure
distribution around a NACA 0010 airfoil at M, = 0.808 is shown,
and it may be seen that the agreement with the direct solution is
fair. However, considering the magnitude of the perturbation
from the base solution, the agreement with the direct result is
more startling. A similar remark can be made about the result
shown in Figure 7 where the pressure distribution around a NACA
64A006 airfoil at M, = 0.875 is shown.

In the original papers on the strained coordinate method,
Equation (34) and its unsteady flow equivalent is not used.
However, the solution around the sonic point was obtained by a
second order interpolation using neighboring points. This
interpolation actually enforces Equation (40) and hence the
results of References 3 and 4 are correct, although the theory
given in their papers is incomplete since it does not explicitly
discuss the use of a condition 1like that of Equation (34) or
Equation (40). In the following discussion the causes of these
oscillations are examined.

3.4 Origin of the Oscillatory Behavior

If there 1is no shock term, that is 6xs is zero, then

Equation (31) can be discretized on a uniform grid to give

N
=.L] £;. U;s A€ + B (41)

Up (- Uo5) =581 154 Uiy

1

-18-
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where B; is the value of I;; at the grid point i and fij Ag is an
influence function that gives the contribution of Uj at the jth
point to the ith point.

Velocity perturbations at points i and i1 + 1 on a uniformly

partitioned grid are given as

N
T
U I(L - Uy - £5 ;880 = 4B, f5.505 A&+ 5 U544 80 + By
j#i,i+l
(42)
N
Ussr (- U ) = Figg,inB81 = 5k £505 U5 BE*+ £54y,5 UsBEHBiy
j#EL,i+1 (43)
If AU = Uiy - Ui’ then AU can be expressed as
AU = A[Af(flﬂ i fi,i+1)'(ci+1’ Ci)]'Ag(Bi+1?;,i+1"Bifi+1,i)+CiBi
2
(CiCi41- fi,i+1fi+1,i(A§) )
where (44)
N
C; = (1 -U,) -£; ; AfandA= L, £ 5 Us AL
1
j#i,i+1

Expanding all variables at the point i+l in terms of their value
at the point i, using a Taylor series expansion, and neglecting
the terms with second or higher order of Af the following
relation is obtained;

AU
(a+B;) —gg|; 4¢ + (1-, )A§ | ;a¢
AU = 5 AUo (45)
(l—Uoi) - (l-—-Uoi) —A-é i %3
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Next consider Equation (42) and note that

= AU
U;(1-U_ ) = A+ [£5 5 Us * £5 349(0 + Af i Ag)y] BE + B (46)

1

To the lowest order, consistent with the order of Equation (45),
Equation (46) can be reduced to

A+ B ;=U(l-U_.)-(f

oi i,i * i, i) Uy A (47)

Substituting this relation in Equation (45) and neglecting terms
of (Ag)2 the following equation is obtained.

o] AB
U. —z|. A€ + 3Z|.A€
AU+ - _yg. = - A£|1 - Aﬁll (48)

(1-u_ ) - —2|.a¢
o4 A§|1

A similar procedure can be used to show that

AU

AB
- Ui Rels KEI
AUT = U, - U, | = 5U, (49)
(l—U + —-g'

. + - U + -
and it can be seen that AU # -AU . If o; # 1 then AU and AU
approach zero as A{ + o and hence lg%l is finite.

If
U, =1, (50)
i

that is, at the sonic point,
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then

AU
o - AB ]
AUT = -AUT = U, + (Agli)/( Agli) (51)

Hence U oscillates about the sonic point since

ou o (52)

which is an expansion shock.

A measure of the amplitude of the oscillation is given by

the second derivative, which gives in discretized form

AU AU
+ - _ 0 (o] AB 2
AUT - AUT = 2 (5gli) Ui mels * ZET'i] ¥
i
IG; (53)
(1-u_ )2 - (—21,)2 a¢?
o; A i
AU AB
If —K%Ii and KEli are considered constant then the amplitude decays
as 1 > increases. 1In other words, the oscillations decrease
(1-U, )
i

the further the point {i is from the sonic point.

The conclusions reached by this analysis are consistent with

the computational evidence shown earlier.
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3.5 Multiple Coordinate Straining

It had been intended to use a multiple straining of the
coordinates so that both the shock and the sonic line location
could be changed; the sonic 1line 1location can be fixed at the
location of the sonic 1line in the base solution U, This
multiple straining would ensure that the hyperbolic domain in
both the perturbed and base solutions would be identical in the
strained coordinate system. Preliminary tests of this idea did
not prove fruitful, and a modified version of the idea was
investigated. Briefly, this modification consisted of evaluating
the second straining parameter to minimize a weighted sum of the
lUliI over the solution. The rationale is that since the |Uli|
is a minimum in some average sense, then the error in the
linearization process, which is of the order of 'Uiil’ would be a
minimum, thus improving the overall accuracy of the solution. A
preliminary example is shown in Figure 8 where the pressure
distribution over a NACA0010 airfoil at a Mach number of 0.808
is shown. It can be seen that the effect of the second straining
is considerable. However, this 1is a preliminary result and
further work is necessary to consolidate the concept of using an
extra straining to improve the accuracy of the solution.

3.6 Summary

In this section the concept of wusing the linearized TSD
equation to model transonic flow is examined. The method does
appear feasible. The shock wave 1is located by requiring that no
expansion shocks can occur 1in the solution, and two methods of
enforcing this condition with the integral equation method are
derived. One form of this condition, Equation (40), can be used
in conjunction with a finite difference solution of the TSD

equation in differential form.
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3.7 Linearized Solutions of the Differential TSD Equation

In its simplest form the linearized TSD equation, equivalent
to Equation (27), can be written as

_18 2_ 2
(l-Uo) ¢1X'X' - on'¢lxl + ¢1YY - 2 8x’ {[(1 + fx)¢oxI] - ¢oxl}

2
+ Pox
2

0
fx 3x’ - ¢ox’} (54)

with the tangency boundary condition

Pry(X'r 20) = ¥ (X(x')) - ¥ (x7) (55)
=Yg (X7) - yi (x') - £yl (x')

To investigate the solution of this equation the computer
code TSFOIL (Ref. 5) is used. TSFOIL uses mixed upwind and
central differencing to solve the nonlinear TSD equation,
Equation (1), and special parabolic and shock point operators to
allow a conservative transfer from one scheme to the other. The
parabolic point operator essentially eliminates expansion shocks
by insuring that

when ¢ = 1. This condition forces ¢,y to be finite. If this
mixed difference scheme is applied to the 1left hand side of
Equation (54), that is, the straining term is zero, and the term
on' ¢lx'
jump condition is

is evaluated with central differences then the shock

+ - +
Up + U] = AxU (57)

compared to the theoretical condition
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U, + U] =0 (58)

The shock jump (0,1 is given by

+ +

[U,] = 2U0] - AxU (59)

Equation (54) with f put equal to zero was solved using the
mixed difference scheme described above and the pressure
distribution around an 11% biconvex airfoil at M, = 0.808 is
shown in Figure 9. The base solution is a 10% biconvex airfoil
at the same Mach number. It can be seen that the linearized
result is smooth and that the shock is located at the wrong
position since it is still at the base position. There are no
oscillations in the pressure distributions in the neighborhood of
the sonic 1line and consequently no apparent mechanism to
correctly locate the shock wave. In this case the difference
scheme, which smooths oscillatory behavior, has eliminated the
oscillations which indicate an incorrect shock location. The
mixed difference scheme can give plausible but incorrect
solutions. The weakened shock Jjump is explained by the modified
jump condition given by Equation (59).

In order to obtain the correct behavior, Equation (54) is
solved using central differencing everywhere. The result,
without straining, is shown in Figure 10 and it may be seen that
the solution oscillates in the neighborhood of the sonic point.
If the straining terms are included and evaluated using Equation
(40) then the solution is smooth in the region of the sonic lines
can be seen in Figure 11.

A second example, using central differencing, is shown in
Figures 12 and 13 where the pressure distribution over a NACA0010
airfoil is shown. Figure 12 shows the result without coordinate
straining and Figure 13 the result with coordinate straining.
The Mach number and base solution are the same as for the

previous example.

—24-
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The grid used in these computations is relatively coarse in
the y direction (14 points) because of computer storage problems.

This may account for the variable accuracy of the calculations.

From the discussions above it can be inferred that the
finite difference algorithm used to solve the TSD equation must
be nondissipative so as to allow oscillations to occur in the
neighborhood of the sonic 1line. These oscillations are removed
by locating the shock wave 1in the correct position. The fact
that the dissipative algorithm gives a plausible but incorrect
solution should be a warning. It 1is 1imperative that the
mathematical aspects of the differential equation being solved
are understood before a choice of algorithm is made.

4.) Linear Perturbation Equations with Constant Coefficients

4.1 Introduction

One of the problems that arise in the previously reported
method for 1linearizing the transonic small disturbance (TSD)
equation is that the number of shock waves in the solution is
fixed by the base solution. Since transonic flows can have
multiple shocks, this is a severe restriction on the method since
the number of shocks in a solution must be known a priori. A
second problem is the behavior at the sonic 1line which is
different in a finite difference approximation of the TSD
equation than in the mathematical formulation. In the former
oscillations appear in the neighborhood of the sonic line, while
in the mathematical picture an expansion shock forms. If the
solution could be linearized about two constant velocities, one
supersonic and one subsonic, then these problems would be
reduced. Since the transonic solution would now consist of
combining any number of elements of the supersonic solution into
a subsonic solution, the shock being represented by a jump from
the supersonic solution to the subsonic solution, any number of
shocks could be incorporated into the solution. Also, since the
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base solutions do not pass continuousl§ through sonic conditions
the problem at the sonic 1line would disappear. The following
analysis suggests a method of implementing this idea.

4.2 Basic Equations

The integral equation for the velocity, u, can be written in

an arbitrary coordinate system as

2

u 2
u - 5= = I + I(u /2) + 6xo Ig + 6xs I + 6ysIh (60)

where I is the Prandtl-Glauert velocity, I is a field integral
and Ig, I, and I, are functions from a three point coordinate
straining with 6xo, 6xs being straining in the x-axis and 6ys a
straining in the y-axis. The terms I(u2/2), Ig’ Igr I, are
continuous and possess continuous first derivatives. Sonic
conditions occur when u is unity.

Now let

u=u_+u (61)

where ug is either 0 (a subsonic value) or 2 (a supersonic
value).

Equation (60) can now be written as

ui 2
(u0 + ul) (1 - uo) = IL + I (3—) + I[(uo + ul) uo] - I(uo /2)
uj 4
+ 55 -5+ 6x, I + 8% Ig+6ys I (62)
Let an * denote values on a sonic line, (uy, + v, = 1).
26—
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Equation (62) can be written as

“i 2
(uo + ul) (1 - uo) = F + 5 - uo/2 (63)
where F is a continuous function. The main object 1is to

determine where the solution should transfer from the subsonic

solution to the supersonic solution and vice versa.

*
Let u, jump from zero to two at some x and from two to zero

at x .
s

Differentiation of Equation (63) gives

(u0 + ul)x (1 - uo) -u__(u_. +u

OoX' o 1) = Fx tu

u - u.u (64)

171x O OoX

or

(uo + u x (1l -u_-u = F (65)

1) o 1) x

If the condition that u, + u, passes smoothly though unity

1
is imposed, Equation (66) gives the shock condition of the

classic integral equation.

Now linearize Equation (63) about u; thus

(uy +u;) (1 -u)) =F - ug/2 (66)

where F is a linearized version of F.

*
It is desired that on either side of x , u, +tou, is unity
(sonic). Thus,
- —* —* +
(ug +u))” =F =-(F -2)=(u, +u) =1 (67)
-27-



or

F =1 (68)

where the “+" and "-" superscripts denote values just ahead of
and behind x respectively, Equation (68) will give an equation
for the shock location

Differentiation of Equation (66) gives

(u0 + u - u,u =F (69)

where a tilde denotes an average value at the point of
*

differentiation. Since u__ is infinite at x (it is a delta

function) and since (uj + u;), is required to be bounded and Fx

is finite it follows that

u, =0 (70)

u = - u (71)

*
Since Ul is the derivative of a step of magnitude 2 it follows
*
that LI is the derivative of a step of magnitude 2. Using this
information and Equation (70) it follows that

u; =1, u, = -1, u, =0 (72)

hence, the condition that Uo, ¥ Uy be*finite leads to the result
that the sonic 1line occurs at X . In other words the
linearization of the equation makes the sonic line at x". since
x" can be put anywhere it follows that the sonic line location is
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arbitrary. It is only accurate if "the (neglected) nonlinear
terms in Equation (64) cancel. That is if

~k Mk

-u, u _ * 2
1 1x =1 x(u1/2) (73)

From Equations (62) and (63)

ul(l - uo) = IL + I(uluo) + [I(ug/z) - ug + ui/Z]

+ 6xs I+ 6xo Ig + 5ys Iy
=F (74)
where F is continuous. Expanding Equation (74) as a Taylor
*
series about x gives
+ ~ A
u, =F - Axe
u, = -(F + Ax F.) (75)
Thus
.y g (m28%XF_ ) (-2 F )  ap ap  ~a
e e W 2 20x _ fx F T Fx  (76)

where it has been noted that F* = 1.

~ % ~ %k

It can be seen that u 1 u 1x

quantity. Hence, a linearized version of Equation (73) is

is actually a first order

F. =0 (77)

Consider now Equation (66) at values just ahead of and behind the
"sonic" 1line and denoted by the superscripts “+" and "-"
respectively. On addition,

[aXal



1 + - 1 =+ —
5 [(ug +uy) + (u o +u) ]=5I[F + F ] -1 (78)
or, since F is continuous,

F =0 (79)

Finally, let the shock and the sonic line coincide at the point
(X ,Yg) (the "top" of the "shock" in u,). This gives

(6xo + xo)lyS = (6xS + xs)lys (80)

Thus the governing equations are Equation (66) with Equation (79)
applied at x*, Equation (69), Equation (77), and Equation (80).
These are sufficient for solving u, at N discrete points, 6xo,
6x, on each grid line and dy,.

As a first approximation the by, term is neglected and only
Equations (66), (69), (77), and (79) need be solved.

4.3 Possibility of Deriving a Closed Form Solution

In the classic strained coordinate theory If, Ig’ Ih are

evaluated using the base velocity, ug- However, since ug is

piecewise constant it is instructive to use the unknown (ug + u,)

in this evaluation.

Consider the equation

(1 - ug) Gyy * byy = O (81)

Since u is constant, Equation (81) can be written as

-30-
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brxr T byy = (Uoby) * [(ugLIES .1y,

- £ (1 - u ) [(1+E )¢, 1., (82)
where
x’ = x + £(x) (83)
In the general coordinate straining, x’ is given by
X =X + xl(x') (84)
and
b = (L + £)¢., (85)

It follows from Equations (83) and (84) that

_ 1
L+t = 1+x, (86)
xl
and hence Equation (82) becomes
¢xlxl + ¢YY = (uo¢xl)xl + [xl , (1 - uO)¢X] ,
X X
xlx'
(m‘l'—) (1 - uy) Py (87)
xl
If the terms involving xlx, are linearized, then Equation (87)

becomes
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brrxe * by = (o) DX (1T-u5) $o]

+ xlx' (1 - uO)¢XX' (88)

Equation (88) can be regarded as a pilecewise application of the
subsonic and supersonic Prandtl Glauert equations in a strained
coordinate system. Thus in the subsonic domain, Dsub, the

equation is

~

and in the supersonic domain, Dsup, the equation is
—¢x1xl + ¢YY = - [xlxl ¢xl] - xlxl¢xlxl (90)

where $x’ is some suitable (zeroth order) approximation to ¢x,.
These equations could be solved piecewise analytically in
specified subdomains, Dsub, Dsup, with the matching condition of
Equation (72) together with the condition

v =V (91)

This second condition is implicit in the derivation of the
integral equation, Equation (62). Both of these conditions are
sufficient to choose a strained coordinate system but, as in the
case of the integral equations, the sonic line will always be at
x". It is not clear how a condition similar to Equation (73) can
be implemented the differential form of the equation, and because
of this a purely analytic solution of Equations (89) and (90) is
probably useless.
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4.4 Results -

Some results were found using the integral equation theory
with a triangular hyperbolic region. The height of the region
was kept fixed, that is , no y straining is used. The hyperbolic
domain closely resembles that for the 10% biconvex airfoil at

M, = 0.808. The pressure distribution over a NACA0010 at
M, = 0.808 is calculated and shown in Figure 14. The straining

terms are evaluated using the base solution. A second result is
shown in Figure 15; in this case the straining terms are
evaluated using an estimate of the final, smooth solution. The
results are very sensitive to small changes in I, and it is not
suggested that this is a viable computation procedure. However,
considering the size of the perturbation from the base solution,
the accuracy of the results is surprising.

5. Perturbation of the Euler Equations

5.1 Introduction

In section (3) a method of 1locating the shock wave in the
linearized TSD equation that is suitable for finite difference
solutions is derived. If these ideas are extended to solutions
of the linearized Euler equations in this section, it is found
that the shock wave can be located correctly but only if the odd
and even points are separated in the solution.

5.2 Basic Equations

The Euler equations can be written in general coordinates
(&, n) as

0 -
26 T og = © (92)
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where

U ] PV ]
~ puu + £ p ~ puv + n_p
E=g! | . p=2g1 X (93)
Vv +
pvU + £.p pV nyP
L (pe + p)UI L (pe + p)VI

where (x, y) is a cartesian coordinate system with velocity
components u, v in the x and y directions respectively, p is

pressure, p is density and e is given by

e =e,. + % q (94)

where er is the internal energy and g is the total velocity. U

and V are given by

a
|

E0 + €V
(95)

<
I

N8 + nyVv

p, u, v are normalized with respect to freestream values, denoted
by the subscript ®, and p and pe are normalized by p, qi. J is
the Jacobian defined by

Equation (92) can be written as

A ~ ~ a ~ ~ ~
3¢ (A (9) Q) + 5 [B (Q) Q) = 0 (97)
where
6 = J_l [p, pu, pv, e]T (98)
~34-
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and
0
BT uu + g g2
2
-vU +
£,
2
] U[¢ - a1]
~ 0
B = -uV + nx¢2
2
-vV +
ny¢
2
] V[¢ - a1]
where
3,
and

3"

U+ (2 - 7)§xu
€xv - (1 - D

Exal - (7 - 1)uu

ﬂX
V+ (2 - 7)nu
MV = (7 - 1)nu

N2 - ( - 1)uv

¢y
€0 - (7 - DV
U + (2 - 7)§yv

{Yal - (7 - 1)vU

My

nyu - (7 - 1)nv

Y

vV + (2 - 7)nyv

= qe/p - ¢%; ¢2 = (7 - 1) (v + vH 2

)

A —;,B=

90

>

| OJ

oF

(7 - 1)E,p
(7 - P
7U

(100)

(7 - 1)np
(7 - 1)’7YP

mwv

(101)

(102)

For a nonlifting airfoil, the numerical solution of Equation

(97) requires the following boundary conditions.

Oon the far field boundary,

all variables; this is valid

On the body surface, n = 0,

-35-
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v = 07 )

8 _

on 0

» (103)

au  _

dn 0

de  _

on =0 J

These boundary conditions impose =zero vorticity on the airfoil
surface, again valid only for isentropic flow. Although the
imposed boundary conditions leave something to be desired, it is
expected that useful insight into the solution of the linearized
Euler equations can be gained.

5.3 Linearized Euler Equations

The linearization of Euler equations used in the present
analysis is designed to be similar to that used for the TSD
equation and, in fact, reduces to the perturbed TSD equation if

the correct limiting processes are used.

Equation (97) is written in a general coordinate system so
if the x coordinate is strained such that

X = x’' + exl(x’) (104)

where (x’,y) is the strained coordinate system with a straining

parameter, & then the effect can be felt only through the

xs’
Jacobian, J.

The coordinates are strained as follows

£(xX, ¥)
n(x, Y)

E(x', Y)
(105)

n(x, Y)
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such that

EX - EX' - exlX' gx: (106)

Ne = Mxr t X MNyiys

The relations of Equations (105) and (106) are similar to those
used in the TSD theory. The general variable Q is expanded as

Q= Q, + € (107)
where
— T
Q = [p, pu, pv, €] (108)

The Jacobians A, B can be written as

>
]

A (Q,) + €Ry(Q,)
(109)

w>
1]

B, (Q,) * €B;(Q))

)

where €A, and €B; are the perturbations of A and B respectively

due to a change in ¢ only.

x! nx

Finally, the Jacobian J is expanded as

J=J,+ed (110)

1

Substitution of Equations (107), (109), and (110) yield the
following perturbation equations
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aAAA a—.AAA—
88 [2o(2)91 * 3y [Bo(Q)Q] = 0 (111)
J J
8 125 8 (a5 1208 (134 8 134
dE (Alel + dn [By, Q1 = a¢ [Jo AQ,1 * an [Jo BoQo]
0 ~oz 0 N
- 3% (P19 - 3y (B19] (112)
It should be noted that
A1 = Xixe gx' Ao
(113)
B1 = x1’7x’x' o)
where KO and Eo are cartesian Jacobians and
_ Q
Q, = 31 (114)
o

The boundary conditions for the zeroth approximation, Equation

(111), are the same as those for Equation (92).

In the particular formulation of the Euler equations used

here a change in freestream Mach number, M is felt only through

wl
the far field boundary condition on p and e. For example,

p = L

2

() '7M°°
(115)

ey = 3 + 1/17(7 - 1IM)

In order to simplify the algebra a simple test case is chosen.
The test case is a flow with a perturbation in freestream Mach
number, the geometry remains fixed; this allows the same grid to
be used for both the zeroth and first approximations. A second

simplification is that the airfoil is symmetric and at zero angle

-38-
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of attack; this allows the use “of symmetrical boundary
conditions, thus reducing the computer requirements.

The boundary conditions for the perturbed, primitive

variables are therefore as follows.

At the far field boundary

(pu); = 0 )
(pv); = 0
. _ . » (116)
1 2
(Y - )My
= £
Pr = 2
™, )
where € is a perturbation parameter. The perturbed flow is one
where the freestream Mach number, Ml’ is given by
1
2
M, = My/(1 + €) (117)
on the airfoil surface, denoted by % = 0, boundary conditions
similar to those in Equation (103) are used.
On the symmetry planes the boundary conditions
& = 0
0§
U1 = 0
(118)
?ﬁ = 0
0§
aﬁ = 0
0¢ J

are used.



For the Dbase solution, Equation (111) 1is solved using
central differencing with added dissipation. This is to ensure
that the base solution, Qo' is smooth except at shock waves. The
linear perturbation equation, Equation (112), 1is solved using
central differences with no added dissipation. At the boundaries
first order derivatives are approximated by first order
differences. Although done mainly for computational use, this
has the effect of weakly coupling the odd and even points in the
solution. Equation (112) can be written in the discretized form

L(Q,) =B + S (119)

where L( ) denotes the difference operator, approximating the

left hand side of Equation (112), B denotes the boundary terms
applicable to Equation (112) and S denotes the terms due to the

straining function. A simplified form of Equation (119) is
obtained by neglecting the straining term, S; thus

L(Ql) = B (120)

The solutions of Equation (119) or (120) are obtained by direct

inversion of the operator L. Thus Equations (119) and (120)
become
_ -1 -1
Q, =L (B) + L'~ (S) (121)
and
_ -1
Q, =L~ (B) (122)

respectively. The computations in this analysis are performed on
a grid of 40x12 for the half plane. This is the maximum grid

size for direct inversions.
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The pressure coefficient found from Equation (111) is shown
in Figure 10, and it can be seen that it is typical of those seen
The

and

for transonic flow. density found from Equation (120) is
17, it
This oscillation

shown in Figure can be seen that it oscillates

considerably. is typical of central difference

approximations when no dissipation is added.

In general a central difference approximation will decouple
the odd and although the
boundary conditions allows coupling between

even points, and, treatment of the

some odd and even
points, it is instructive to look at a solution composed only of
odd or even points. In Figures 18a and 18b the density variation

for the odd and even points respectively are shown. It can be

seen that the solution in the neighborhood of the sonic line is

smooth except for a “spike;" the oscillations near the shock
wave are due to the presence of a "nonphysical" sonic line in the
shock capture region. Hence, it can be surmised that the same
phenomena apparent in the TSD results exists for the "decoupled"

the
for an oscillatory behavior in the sonic region.
the TSD result the
that the decoupled solutions are smooth
the
namely by enforcing the condition that

linear Euler equations, that is, solution is smooth except
In analogy with
new shock 1location is enforced by requiring
This

the TSD equation,

at the sonic line.

is accomplished in same manner as for

(123)

at the sonic line. Thus, the
Equation (121) and determine the parameter 6xs in the term L_l(S)

(123). The

solution procedure is to solve

by enforcing Equation complete solution for Q is

determined by

QX, ¥) = Q (X', ¥) + €0 (X', y)
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5.4 Results

The pressure distribution around a NACA0010 airfoil with
M, = 0.82 is shown in Figure 19 with a base solution of the same
airfoil at M, = 0.8. In Figure 19a the odd points are shown, and
in Figure 19b the even points are shown. It is not clear why the
even points should give a more accurate result than the odd

points.

In Figure 20 the pressure distribution around a 10% biconvex
airfoil at M, = 0.828 is shown with a base solution of the same
airfoil at M, = 0.808. The odd and even results are shown in
Figures 20a and 20b respectively and again it may be observed

that the even points give a more accurate result.

There is a general problem with these Euler computations
which is the relatively low number of grid points. The maximum

number of grid points is determined by the maximum in core
storage of the CRAY X MP machine to allow a direct inversion of
the operator L( ). It 1is expected that the grid error in the
decoupled points is considerable.

5.5 Concluding Remarks

A linearized form of the Euler equations has been developed
and a method of 1locating shock wave derived. The key to the
method is the decoupling of odd and even points and the removal
of the characteristic oscillations at the sonic line.

6.) Analysis of the Modeling of Separated Flow Using the Euler
Equations

6.1 Introduction

In recent years solutions of the Euler equations have been
used to model the flow around aircraft or missiles. The main

advantage of the Euler equations over simpler sets of equations
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or equations such as the potential equation is that the Euler
equations can model nonisentropic, and hence rotational flows.
In certain cases, especially missile flows, the ability to
capture contact discontinuities and hence model separated flow
has been an important feature of the Euler equations. Such flows
have several sources of vorticity. Vorticity is generated from
curved shock waves and in the viscous boundary layer on bodies.
If the boundary layer flow separates from the body, a large
vortical region is produced which can be modeled by the Euler
equations if the necessary vorticity can be produced. For the
Euler equations, vorticity can be produced by curved shocks, by
certain boundary conditions, or by numerical discretization
error. The numerical error is a somewhat nebulous quantity which
seems to Dbe controllable only by careful smoothing and
optimization of the computational grid. Boundary conditions for
modeling separation usually involve specification of the
velocities at or around a specified separation point. If the
separation is from missile fins then the separation point is
taken to be the fin edges; if body separation is to be modeled
then some empirical separation criterion is used to determine the
separation point. Also, because of the vorticity generated by
curved shocks and numerical error, the Euler equations can have
solutions which contain separated flow regions even without the
specification of a separation point.

In this section various aspects of modeling separated flows
on smooth surfaces using the Euler equations are examined. It is
found that “Euler separation" can be radically different in
behavior than real, physical separation. It is found also that a
separation point cannot be specified arbitrarily on the body
without further modification to the Euler equations. It is
suggested that numerical treatments of the boundary condition may
not be consistent with the Euler equations.

6.2 Analysis

The Euler equations are examined to determine the conditions

under which separation is possible in the sense that the flow
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tangential to a surface can have a~ stagnation point. The
vorticity equation,

can be written in terms of a stream function ¢ such that
+ = pw + U - \Y 124
Vux ¥ Pyy = P Py Px (124)
where w is the vorticity and
¢y = PU - pUyi ¥, = -pV (125)

The density is given 1in terms of the entropy, S, and the

velocity components U, V by

1
p = p, {1+ —(—'75—1)— M2 1 - v? - v?1}7 lexp(-s/Rr) (126)

The vorticity is given by Crocco’s theorem as

as oS
= = P . o (127)

Q13

where R is the gas constant

and

OJIOD
=]
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is the derivative in the direction normal to the streamlines.

Note that

8 _ yo_ 9
on ~ U dy ~ V ax (128)

Along a streamline the entropy is constant and hence

ds , . 8S _
Ugs * Vs <O (129)
The pressure is given by
1) 2 2 2 1
p=p, {1+ M2 (1 - v? - v?) )7 texp(-s/R) (130)

Using Equations (126), (127), (128), and (129), Equation (124)

can be written as

v/
- - 7-1 _ 8s _ 8s
Rq
1 1
o) v-1 o] 7 -1
*t Py 3y [Q exp(-S/R)]1 U - p, 37 [Q" &xp(-S/R)]V
® By ® 3x (131)
where Q is a function of U and V and is given by
0 =1+ w2 (1 - u? - vP) (132)
Equation (131) can be written as
Vux T Pyy = £(X, ¥) (133)

where f(x,y) is the right hand side of Equation (131).
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The problem under consideration is the flow around a thin

body, given by

Y = {¥Yq,(X) yz2o
su (134)

Yg1(X¥) y<o

where the subscripts u and 1 denote the upper and lower surfaces
of the body. The body may be at an angle of attack, «

To some degree of approximation it can be assumed that the
body boundary condition can be applied on a slit y=x*0. The first
approximation is thin airfoil theory which gives

Yau (X)
[(QV)] = -« (135)
PoUq | Y=20 y2, (%)

Equation (133) can be written in integral form using Green’'s
identity to give

JpIK(x, &iy,m£(E,n)dD = - f{K(x,ﬁ;y,n)%% (§:m)
C1+CW+CS+C°°

- g, m SBELVn) 40 (136)

where C is the boundary of some domain D and v is the unit inward
drawn normal to C. The domain D excludes all regions of the flow

where second derivatives of ¢ or K do not exist, such as the body

(represented by y = #0), wakes, shock waves, and contact
surfaces. In Equation (136) c, is that part of the boundary
surrounding the point (X,Y), C represents the Dboundary

w
surrounding the x axis, Cq the boundary surrounding the shock

waves or contact surfaces and C, is the far field boundary. A

sketch of the boundaries C;r C Cyr C, are shown in Figure 2; to

wl
avoid confusion with the entropy, the domain S in Figure 2 is
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denoted by D in the present analysis. The kernel function in
Equation (136) is given by

—

K(x, 65y, = 55 In{(x-6)> + (y-m 21 (137)

For subsonic flow the Euler equations are elliptic and hence
boundary conditions must be specified on the entire boundary.
For transonic flow the flow outside of a finite domain is
subsonic so that the same conditions must be satisfied on the

outer boundary, C_. Equation (136) is similar to the integral

00
equation for potential flow, and it may be deduced (Ref. 6) that

the line integral over C_, will contribute a finite velocity on C,

as R+o if

= A InR + B 138)
(

where A and B may be functions of the angular coordinate 8.

If this relation is used then the 1line integral over C

becomes constant.

Oon performing the various limiting operations as r+0 and R+
Equation (136) becomes

$(x,y) = [TIR AP, ~ Ko A $HdE

+ cos(u,qs) +
- fcéKs[¢§]_ + Ks—gggfgjgg) [¥,,]_}tdn

oK OK cos(v,n_.)
+ s . s s
ICS[¢]_{6€ 'aﬂ COS(V’ES) }dﬂ

+

+

ijdefdn + constant (139)

where for a function g(§,7n)
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A9 = g(§, +0) - g(§, - 0) (140)
and
K, = K(x,§; Y,0)
(141)
K =

s = K(x,/ &7 ¥/m)

§S and ng are the coordinates of any surface of discontinuity and
cos(u,ns), cos(u,gs) are the direction cosines of the normal to
these surfaces. [ ]i denotes a jump across the surface.

If the jumps in derivatives of ¢, such as ¢, and ¢Y, are
finite then $ must be continuous since a jump in ¢ would give an

infinite derivative. Hence

(¢17 = o0 (142)

The integrand of the first integral over C in Equation (139)

becomes

cos(v,n.) o~
Ko (1910 + 19,1] s ! - [pq, 17 cos(v,€)  (143)

where q: is the velocity tangential to the curve C,. Hence

Equation (139) can be written as

POXY) = [olK AP, - Ko b 91

ICSKS[pqt]fsec(Vfés)dn

+

ijKyfdgdn + constant (144)
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Equation (144) can be differentiated with respect to y to give

00
by= PU-PUq = [o{Ko By = Kop B¥HdE

~ +
o Koylpapl sec(v,gg)dn

“+

J IR £dgdn

By integration by parts it can be shown that

00

IoKoquo¢d§ B fo ox o¢§d§

ijK fdgdny = fo oonFd§ ijKyangdn
where
= [T£(€,m ) an’
Thus Equation (145) can be written as

pU-p U, = - j:Koon¢§d§ + joxoy A ¥, - AFIdE
- ICSKSy[pqt]tsec(V,gs)dn
- K__Fded

On differentiation of Equation (144) with respect to
performing a similar integration by parts
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T o
pv = - fzKOX{AO¢n - A FIAE + [K, Aog, dE
s

- JpJRy,Fagdn (150)

If the limit as y - ® o is taken of Equations (149) and (150) the
following equations result

[P0y = o) BoL00) - PoU™ = § fegg%g

- Lim. { ijKyn[F(§,ﬂ) - F(x,+0)]d{dn

y*#*o
- Jo Kgylpa 1l sec(v, g )dn) (151)
s
- {(pV) 3 AWy L @ [A,(PU)-AF]
y = %0 2 ° x - § a¢
. ~ o+
+ Lim. {—fKSX[pqt]_sec(v,§s>dn
y-):ko CS
It can be seen then that on y = o0 Equation (149) gives

only the symmetric part of pU; the asymmetric part is given by
Equation (152) in terms of the symmetric part of (pV)Y - o

It should be noted that in both Equation (149) and Equation
(150) the integral over C, may contribute a discontinuity
depending on the orientation of C, to the axis. For example, if
Cq is in the direction of the y axis (a normal shock wave
perhaps) the integral over Cg in Equation (149) is continuous.
Since the other integrals are continuous (Ref. 6), pU is
continuous through a normal shock; this is the correct Rankine-
Hugoniot solution. However, in Equation (150) the integral over

Cq provides the term



- % [pV] sgn(x -x)

where X is the location of the shock. This term ensures that
Equation (150) is consistent on both sides of the shock. The
actual value of [pV]t can be found from the jump relations,

either for a shock wave or a contact discontinuity.

From Equations (126) and (131) it can be seen that p and £
(and consequently F) are functions only of U and V and the
entropy S. The entropy is given by Equation (129) and the
velocities just ahead of the shock wave. Thus S is a function
- 4o 18 defined as a boundary
condition Equations (149) and (150) are equations for U and V

only of U, V. Hence, if (pV)Y

throughout the flow field. Because of the complexity of the
relations for p,S and F it is not easy to determine the number of
possible solutions. However, it 1is safe to say that if pV is
specified on the body then pU and pV are determined completely in
the flow field; pU 1is also determined on the body. In
otherwords, U and V cannot both be specified on the boundary;
this statement requires further discussion.

It has been the practice in some problems to model separated
flow using the Euler equations. In these methods an empirically
determined separation line is specified. The separation line is
such that the flow on at least one side of the resulting contact
surface on the body surface is a stagnation point. In effect the
method is specifying both U and V at this point and from the
above argument this overspecifies the boundary conditions for the
Euler equations. The necessary additional degree of freedom for
these techniques could be introduced by an additional entropy or
vorticity source which would mimic the absent boundary layer

generated vorticity.

A second point that arises 1is the use of extrapolation of
the tangential velocity to get a value on the surface, for

example, by the use of boundary conditions of the type in
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Equation (103). These conditions specify the tangential velocity
on the surface in contradiction to the above argument.
Consequently, solutions employing this device are not solutions
of the Euler equations, although the error is difficult to
estimate, and the approximation may be adequate in an engineering
sense.

The asymmetric or "lifting" part of pU is given by Equation
(152). This equation is similar to one in classic aerodynamic
theory and has at 1least one eigensolution such that Equation
(152) can be written as

S pny 7 BotAY) o [ (PU)-AF - RG(E) ]
y=+o 2 © x - € §

. ~ o+
+ Lim. {—Jst[pqt]_sec(V,gs)dn
y-)to CS

- foKxﬂFdfdﬂ} (153)
where
1
2
/(€ (1 - &) 173 £<1
154
G(§) = { ( )
o ; 21
and A is an arbitrary constant. An additional condition 1is
necessary to determine the constant. A general solution of
Equation (153) is
A_(pU) - AF = AG(X) + H(X) (155)
where H(x) is the "basic" solution. Since any choice of A other

than zero would make (Ao(pU) - AOF] infinite at the trailing edge
the logical choice is

-52-—
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A=0 (156)

It is important to note that this condition, the classic Kutta
condition, must be imposed either explictly or implicitly in any
solution procedure since, in general, the Euler equations can
give an arbitrary lift.

As a final point it can be stated that if a separation point
in the Euler equations is defined as a stagnation point, then for
a symmetric body Equation (151) can conceivably give a solution
that will make U zero at some point on the surface. The actual
point is determined by the body geometry and by the entropy
generated in the flow. For a 1lifting flow a similar situation
arises but some measure of control on the location of the
separation points is given by the arbitrary constant, A,
discussed above.

6.3 Additional Comments on “Euler* Separation

One of the jump conditions across a vortex sheet is that
Ap = 0 (157)
Equations (130) and (157) then give

00

(A5 v 1 - q?) exp(-sTep)

=+ 5w (1 - a7} exp(-sT/e,)  (158)

where "+" and "-" signs denote values on the upstream and
downstream sides of the separation point respectively.

If the velocity on the downstream side is zero, then
Equation (158) gives
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q+2 = _ ____3——5 {11 + iﬂéll Mii [exp(AS/Cp) -11} (159)

(7-1) M,

where

As = st - s” (160)
For a real value of g+ to exist
exp(AS/cp) <1 (161)
For AS equal to zero, that is isentropic flow,
qa =0 (162)

In other words, if separation occurs in isentropic flow, the flow
has a stagnation point at both sides of the separation.

From Equation (161)

s’ <s (163)

If a shock wave 1is upstream of the separation and produces
entropy then Equation (163) cannot be satisfied. Re-examining
Equation (158), it 1is found that this implies that at the
separation point the stagnation point should be on the upstream
side of the separation point, in other words the separation
streamline would be inclined in the upstream direction. This
flow feature does not appear in experiment thus indicating some
of the peculiarities of separation phenomena in the Euler

equations.
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Since the flow is attached before separation it follows that

for a convex surface

8p > 0 (164)

where n is the direction normal to the surface.

Using Equation (130), Equation (164) becomes

yMia 39 - 1+ ABR 2 (1% & (s/R) 2 0 (165)
or
M- 1+ R W2 (1) & sy (166)

™ d

If the flow is isentropic then d8q/8n is negative in contradiction
to 8g/dn for a viscous flow which is positive. However, if
0(S/R)/dn is negative, as it will be for a shock generated
entropy, 8q/8n will be positive and have the same sign as for a
viscous flow, thus giving some realism to the flow model.

Separation is characterized by the vorticity in the boundary

layer. For a turbulent boundary layer an approximation to the
vorticity is given by

(167)

where Wy is the vorticity due to the boundary layer, 6§ is the
boundary layer thickness, and de is the velocity external to the

boundary layer. From Equation (167)

= (168)



The vorticity generated by the shock wave is given by Crocco’s
theorem, Equation (129), and can be written as

2

23]
XI=
Q'm

where w_ is the vorticity generated by the shock wave and a is
the speed of sound. Hence,

E (106 _238(S/R) 7183 (S/R) (170)
Wy 2 on 2 On
19, ™

where M is the local Mach number for the Euler calculation and g
has been identified with q,-

The entropy rise through a weak shock is given approximately
by (Ref. 7)

oM
d(S/R) o _47 2 2 1
on shock ~ (7+1)2 (Ml - 1) Ml on (171)

where M, is the Mach number just ahead of the shock. 1If it is

assumed that

(S/R)

o_ ~c O
on (S/R) = € on shock (172)
then Equation (170) gives
“g . 7cC8 4y (M% - 1)2m | _
w, $ 2 ° 2 1 113n Ishock = F (173)
b T M (7+1)

This equation indicates that the vorticity generated by the shock
is much less than that generated by the boundary layer for weak
shocks but that as M increases, the 1inviscidly generated

1
vorticity can dominate.



A crude indication of the magnitude of wE/wb is given as
follows: Let C be unity, M = 1, § = 0.01, (the boundary layer
thickness). Finally, assume the shock length is unity and that

the variation of M, along the shock is linear. Hence,

1

BMl
o 2 -(M, - 1) (174)

The variation of the function F with M1 is shown in Table ‘1.

Ml F
1.0 0

1.2 0.0023
1.4 0.0251
1.6 0.1136
1.8 0.3512
2.0 0.8750
2.2 1.8924
2.4 3.7007
2.6 6.7092

Table 1

It can be seen that the overall contribution of the shock
generated vorticity increases rapidly with the strength of the
shock, indicating that at the higher supersonic Mach numbers the
vorticity field is dominated by the shock induced vorticity.

7.) Concluding Remarks

This work is concerned with developing methods for solving
transonic flow problems using linearized forms of the TSD
equation and the Euler equations. Methods have been developed
using both integral equation methods and finite difference
methods. A key element in both the TSD and Euler models is the
use of a strained coordinate system in which the shock remains
fixed. Additional criteria are then developed to determine the
free parameters in the coordinate straining; these free
parameters are functions of the shock location.
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From an integral equation analysis it 1is found that the
shock wave is located by ensuring that no expansion shocks exist
in the solution. If a numerical solution 1is obtained, this
expansion shock is represented by oscillations in the solution
near the sonic line; the correct shock location is determined by
removing these oscillations. In other words, the oscillations
are a crucial element in locating the shock wave. This
conclusion is true for finite difference solutions as well as
integral equation solutions. Finite difference algorithms
frequently have dissipation to remove oscillations caused by
nunerical error at shock waves. It is shown in the present work
that such algorithms can remove the oscillations at the sonic
line, thus eliminating the mechanism for locating the shock wave.
An example is given of a plausible result which has the shock in
the wrong location. The important point is that algorithms
should reflect the mathematics of the equations. Since in many
cases the mathematics are unknown, it is possible that commonly
used algorithms could lead to nonphysical results.

A second, major, study is that into the ability of the Euler
equations to model separated flow. The investigation shows that
the correct boundary condition is that velocity normal to the
solid body should be zero; all other flow variables can be
obtained from the resulting equation. Thus it is not consistent
to specify a separation point on the body since this imposes an
inconsistent value of the tangential velocity. The one exception
to this statement is for a 1lifting case where a Kutta condition,
which imposes a separation point, is necessary to close the
solution. As a final point, it is shown that "Euler separation"
does have some nonphysical features. Again, it must be stressed
that more study of the mathematical nature of the Euler equations
is necessary to prevent the use of algorithms that are
inconsistent with the differential equations.
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Figure 1.- Pressure distribution for
Equation (TSFOIL).
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Figure 2.-

Ni
-
8

Domain of Integration for Greens Theorem.
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———.——— BASE SOLUTION

DIRECT SOLUTION
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Figure 6.- Pressure Distribution
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Airfoil, M, = 0.808
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—— - ——— BASE SOLUTION
--------- DIRECT SOLUTION
PERTURBED SOLUTION
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Figure 7.~ Pressure Distribution Around
Airfoil, M, = 0.875
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——-—— BASE SOLUTION
--------- DIRECT SOLUTION
PERTURBED SOLUTION
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o
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Figure 8.- Pressure Distribution Around a NACA 0010
Airfoil; M, = 0.808 with Double Straining.
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--------- DIRECT SOLUTION

PERTURBED SOLUTION

{no straining)
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Q
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X
Figure 9.- Finite Difference Solution with  Mixed

Differences.
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--------- DIRECT SOLUTION
PERTURBEO SOLUTION

{no straining)
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o
—
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Figure 10.- Finite Difference Solution with Central
Differences (11% biconvex airfoil).
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———-—— BASE SOLUTION
--------- DIRECT SOLUTION
PERTURBED SOLUTION
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Figure 11.- Finite difference Solution with Coordinate
Straining (11% biconvex airfoil).
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DIRECT SOLUTION

PERTURBED SOLUTION

(no straining)
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Figure 12.-

Finite Difference
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——— - —— BASE SOLUTION
--------- DIRECT SOLUTION
PERTURBED SOLUTION

-1.5

-1.0

Figure 13.-

Finite Difference Solution with Coordinate
Straining (NACA 0010 Airfoil).
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Figure 14.- Solution of Linear Constant Coefficient
Equation (NACA 0010 Airfoil).
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————— BASE SOLUTION
--------- DIRECT SOLUTION
PERTURBED SOLUTION
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Figure 15.-

0.2 0.4 0.6 0.8 1.0

Solution of Linear Constant Coefficient
Equation with Modified Straining Terms (NACA
0010 Airfoil).
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--------- DIRECT SOLUTION
PERTURBED SOLUTION

0.5

Figure 16.-

0.2 0.4

Base Solution for
Airfoil).
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--------- DIRECT SOLUTION
PERTURBED SOLUTION
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0.2 -

Jol 0.0

-0.4 |

Figure 17.- Solution of Linear Euler Equation by Central
Differences (NACA 0010 Airfoil).
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--------- DIRECT SOLUTION
PERTURBED SOLUTION

0.6

0.2 |

0.0 |
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-0.6 1 1 | |

(a) 0dd Points

Figure 18.- Solution of Linear Euler Equations by Central
Differences with no straining.
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(b) Even Points.
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Figure 18.- Concluded.
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--------- ODIRECT SOLUTION
PERTURBED SOLUTION

(no straining)

Figure 19.-

(a) 0dd Points

Solution of Linear Euler Equations with
Coordinate Straining (NACA 0010 Airfoil).
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--------- DIRECT SOLUTION
PERTURBED SOLUTION

{no straining)

0.2 0.4 0.6 0.8

(b) Even Points

Figure 19.- Concluded.
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--------- DIRECT SOLUTION
PERTURBED SOLUTION

(no straining)

-1.5

(a) 0dd Points

Figure 20.- Solution for an 11% Biconvex Airfoil.
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--------- DIRECT SOLUTION
PERTURBED SOLUTION

{no straining)

0.2 0.4 0.6 0.8

(b) Even Points

Figure 20b.- Concluded.
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